기치
  • Rapid CNC 프로토타입 제작 및 부품 가공 FAQ Mar 18, 2025
    1. 장점은 무엇입니까? CNC 프로토타입 3D 프린팅보다?답변: CNC 프로토타입은 일반적으로 정확도와 재료 선택 측면에서 3D 프린팅보다 우수합니다. CNC 가공은 금속 및 플라스틱과 같은 다양한 재료를 처리할 수 있으며, 표면 품질이 높아 기능 테스트 및 최종 제품 생산에 더 적합합니다.제품 설계에서 초기 프로토타입 참여의 영향 이해프로토타입 전문가의 초기 참여는 제품 설계 프로세스에서 중요한 역할을 합니다. 이러한 전문가를 초기 단계에 참여시킴으로써 설계 팀은 제조 중에 발생할 수 있는 잠재적 문제를 예측하고 완화하기 위해 기술을 활용할 수 있습니다.조기 전문가 참여의 주요 이점:향상된 협업: 프로토타입 제작 전문가를 일찍 통합함으로써 설계 및 제조 팀이 원활하게 협력하여 개발 프로세스 전체에 걸쳐 통합된 접근 방식을 보장합니다.조기에 과제 파악: 이러한 전문가들은 비용이 많이 드는 제조 문제로 확대되기 훨씬 전에 잠재적인 설계 장애물을 정확히 지적하는 데 도움이 되는 귀중한 통찰력을 제공합니다.제조 가능성을 최적화하기 위한 노력: 프로토타입 전문가는 방대한 경험을 바탕으로 설계를 보다 쉽고 비용 효율적으로 생산할 수 있는 수정안을 제안할 수 있습니다.성능 개선: 초기 입력을 통해 프로토타입 제작 전문 지식에 따른 반복적 테스트와 개선을 통해 제품이 성능 기대치를 충족할 뿐만 아니라 초과달성되도록 보장합니다.요약하자면, 설계 단계 초기에 프로토타입 전문가의 지식을 활용하면 컨셉트에서 최종 제품으로의 전환이 더 순조로워지고 효율성과 품질이 향상됩니다.2. CNC 프로토타입의 가공 주기는 일반적으로 얼마나 됩니까?답변: CNC 프로토타입의 처리 주기는 설계의 복잡성과 선택된 재료에 따라 달라집니다. 간단한 설계는 1~3일 안에 완료될 수 있지만, 복잡한 프로토타입은 5~7일 이상 걸릴 수 있습니다.3. CNC 프로토타입 제작이 생산 비용을 어떻게 절감하는가CNC 프로토타입 제작은 설계 및 제조 과제를 미리 해결하여 전체 생산 비용을 최소화하는 데 중요한 역할을 합니다. 방법은 다음과 같습니다.결함의 조기 식별: 프로토타입을 만들면 설계 및 생산 프로세스의 잠재적인 문제가 확대되기 전에 식별됩니다. 이를 통해 빠른 조정이 가능하여 대량 생산으로 비용이 많이 드는 실수가 발생하지 않도록 합니다.반복에서의 효율성: 디자인을 테스트하기 위해 완전한 생산을 거치는 대신 CNC 프로토타입 제작은 반복적인 테스트와 개선을 허용합니다. 이 프로세스는 생산이 시작된 후 대규모 변경과 관련된 상당한 비용을 절약합니다.재료 및 공정 최적화: CNC 프로토타입을 통해 기업은 다양한 재료와 방법을 실험하여 상당한 리소스를 투자하지 않고도 가장 비용 효율적인 옵션을 결정할 수 있습니다. 이러한 실험은 최적화된 생산 공정으로 이어지고, 낭비를 최소화하고 비용을 절감합니다.위험 완화: CNC 프로토타입 제작 시 실제 사용 및 조건을 시뮬레이션함으로써 예상치 못한 문제를 해결하고 출시 후 비용이 많이 드는 리콜이나 제품 고장 가능성을 줄일 수 있습니다.CNC 프로토타입을 개발 단계에 통합하면 전략적인 비용 절감 기회를 얻을 수 있으며, 컨셉트에서 시장에 출시할 수 있는 제품으로의 원활한 전환이 보장됩니다.4. CNC 프로토타입의 치수 정확도를 어떻게 보장합니까?답변: 치수 정확도는 정밀한 CNC 장비, 엄격한 가공 매개변수 제어, 사후 테스트를 통해 보장됩니다. 고품질 도구와 커터를 사용하는 것도 매우 중요합니다.5. CNC 프로토타입 제조에 가장 일반적으로 사용되는 재료는 무엇입니까?답변: 일반적인 소재로는 알루미늄, 구리, 스테인리스 스틸, ABS 플라스틱, 나일론 등이 있습니다. 이러한 소재는 뛰어난 기계적 특성, 가공 및 표면 처리 효과로 인해 널리 사용됩니다.6. CNC 프로토타입을 소량으로 생산할 수 있나요?답변: 예, CNC 프로토타입은 소량 생산에 매우 적합하며, 특히 설계나 시장 테스트를 빠르게 검증해야 할 때 더욱 그렇습니다. 유연성과 정밀성으로 인해 이상적인 선택입니다.7. CNC 프로토타입은 복잡한 형상에 적합합니까?답변: CNC 가공은 특히 5축 CNC 기계를 사용할 때 매우 복잡한 형상을 처리할 수 있습니다. 그러나 일부 매우 복잡한 설계에는 특수 고정 장치 또는 단계별 처리가 필요할 수 있습니다.8. CNC 프로토타입의 표면 처리 옵션은 무엇입니까?답변: 일반적인 표면 처리에는 다음이 포함됩니다. 샌드블라스팅, 양극산화, 전기 도금 및 연마. 이러한 처리로 내식성, 경도를 개선하거나 특정 미적 효과를 얻을 수 있습니다.9. CNC 프로토타입은 어떤 산업에 적합합니까?답변: CNC 프로토타입은 다음과 같은 많은 산업에서 널리 사용됩니다. 자동차 부품, 항공우주 부품, 의료기기 부품, 가전제품 부품, 산업 장비 부품등이 있으며, 특히 높은 정밀도와 기능 검증이 필요한 응용 프로그램 시나리오에 적합합니다.10. 올바른 선택 방법 CNC 프로토타입 서비스 공급자?답변: 공급업체를 선택할 때는 장비 성능, 기술 경험, 납품 주기, 품질 관리 시스템, 고객 피드백을 고려해야 합니다. 또한 특정 설계 및 재료 요구 사항을 충족할 수 있는지 이해하는 것도 중요합니다. 사내 가공 및 제작 역량의 장점은 무엇입니까? 자체 기계 가공 및 제작 능력은 회사를 이러한 서비스를 아웃소싱하는 회사와 차별화하는 다양한 이점을 제공합니다.속도와 효율성: 기계 가공 및 제작 작업을 내부적으로 처리함으로써 회사는 리드 타임을 크게 줄일 수 있습니다. 이러한 효율성은 타사 서비스가 관여하는 경우보다 프로젝트가 개념에서 완료까지 훨씬 빠르게 진행된다는 것을 의미합니다.향상된 품질 관리: 프로세스의 모든 단계가 한 지붕 아래에서 진행되므로 품질 기준을 모니터링하고 유지할 수 있는 능력이 더 커집니다. 이러한 관리를 통해 오류를 최소화하고 각 제품이 고성능 기준을 충족하도록 보장합니다.비용 효율성: 내부 역량은 외부 계약자의 필요성을 없애 전체 프로젝트 비용을 줄입니다. 그런 다음 절감된 비용을 고객에게 전달하여 시장에서 서비스의 경쟁력을 높일 수 있습니다.프로토타입 제작의 유연성: 프로토타입 제작 단계에서 빠른 조정이 가능하여 빠른 반복과 개선이 가능합니다. 이러한 민첩성은 클라이언트 사양을 충족하고 변화에 신속하게 적응하는 데 필수적입니다.기밀 유지 및 지적 재산권 보호: 모든 작업을 내부적으로 수행하면 지적 재산권이 도난되거나 유출될 위험이 줄어들고 설계와 혁신의 보안이 유지됩니다.이러한 역량을 사내에서 통합함으로써 회사는 전반적인 운영 효율성을 강화하고 더욱 빠른 속도와 안정성으로 뛰어난 제품을 제공할 수 있습니다.11. 프로토타입 제작이 제품 개발에서 중요한 단계로 간주되는 이유는 무엇입니까?프로토타입 제작은 다면적인 이점 때문에 제품 개발 여정에서 중요한 단계로 자리 잡고 있습니다. 핵심적으로 프로토타입 제작은 제품의 초기 모델을 만드는 것을 포함합니다. 이 기본 단계를 통해 팀은 전체 생산으로 확장하기 전에 기능 및 디자인과 같은 다양한 측면을 탐색하고 테스트할 수 있습니다.프로토타입 제작의 이점:설계 결함을 일찍 발견: 프로토타입을 실험함으로써 대량 생산이 시작되기 전에 설계와 기능 모두에서 잠재적인 문제를 파악할 수 있습니다. 이러한 사전 예방적 접근 방식은 나중에 비용이 많이 드는 수정을 피하는 데 도움이 됩니다.제품 성능 향상: 프로토타입의 반복적인 테스트를 통해 설계 조정 및 개선을 효율적으로 수행할 수 있으며, 궁극적으로 실제 조건에서 우수한 성능을 보이는 제품을 만들어낼 수 있습니다.비용 효율성: 초기 단계 조정은 상당한 시간과 리소스를 절약합니다. 문제를 미리 파악함으로써 회사는 값비싼 생산 실수를 피하고 투자를 최적화할 수 있습니다.고객 기대에 부응하기: 프로토타입은 제품이 소비자 요구 사항과 품질 기준에 부합하는지 여부를 측정할 수 있는 구체적인 방법을 제공하므로 출시 시 더 높은 고객 만족도를 보장합니다.요약하자면, 프로토타입 제작은 필수적이며, 팀이 제품을 개선하고 완성하여 업계 표준과 소비자 요구 사항을 모두 효과적으로 충족할 수 있도록 해줍니다.
  • What materials are best for custom robot parts? Mar 25, 2025
    Metals: Aluminum, stainless steel, and titanium alloys are ideal materials for custom robot parts because they are lightweight but strong, making them ideal for parts that need to withstand heavy use and frequent movement. Copper, brass, and bronze have excellent electrical conductivity, making them ideal for parts that require electrical current or wiring.   Plastics: ABS, polycarbonate (PC) and acrylonitrile  stybutadienerene (ABS) are all highly durable materials that can withstand extreme temperatures and harsh environments, making them suitable for robotic applications. High density polyethylene (HDPE), polypropylene (PP), and nylon offer flexibility while remaining light, which makes them ideal for creating custom robotic parts with complex shapes or complex designs.                
  • From prototyping to production – how 3D printing is evolving Printing production-run volumes of parts is becoming an increasingly viable solution. Apr 08, 2025
    While the use of 3D printing for rapid prototyping has been developing since the late 80s and is now extremely common, the industry has also steadily continued its move towards production applications, including low-volume production, mass customization, and serial production. “We’re seeing more and more large-quantity orders and repeat orders,” says Protolabs’ Robin Brockötter. “There’s definitely a trend towards full-scale production.” This is influenced by many and diverse factors, including a preference for more local production amid global supply-chain disruptions (9% of our survey respondents said low susceptibility to supply chain issues is the main reason why they opted for 3D printing over other manufacturing methods) and sustainability concerns. In 2023, 21% of our survey respondents used 3D printing for end-use parts—up from 20% in 2022—and 4% used it for aesthetic parts. When it comes to replacing injection-molding manufacturing with 3D printing processes, it’s all about order volumes: for low-volume production, 3D printing is often the more cost-effective solution, while at higher volumes, injection molding becomes more economical. However, the point where that happens— the ‘sweet spot’ of maximum viable 3D printing order volume—is shifting. “3D printing can now start producing more and more parts before injection molding becomes cheaper,” says Brockötter. Results from our 2024 survey support this. In our 2023 survey, doubts around 3D printing as a choice for “production volume and scale” led 47% of respondents to opt for different manufacturing technologies, but this year that number has dropped to 45%, showing increased confidence in scaling with 3D printing. And throughout the years, our surveys also show a steady growth in production-run volumes: respondents saying they printed more than 10 parts rose from 36% in 2020, to 49% in 2021 and to 76% in 2022. While this figure has stayed the same for 2023, marking stabilization, the percentage of respondents saying they printed more than 1000 parts rose from 4.7% in 2022 to 6.2% in 2023. Beyond the actual printing process, there are many other aspects that influence the scalability of using 3D printing technologies for production, from software, design, and materials to post-processing and finalizing tasks such as cleaning, secondary finishing, spot removal, stress relief, and inspections. As the 3D printing ecosystem continues to mature, a support system of companies providing many of these services is springing up around 3D printing businesses, simplifying production processes. This in turn will encourage the uptake of these processes. In addition, increasing familiarity with DFAM—the additive design space—will mean engineers and designers will become more proficient at navigating design limitations and opportunities and leveraging new materials. And many obstacles are becoming less of an issue due to new developments and technologies. One example is post-processing, which can currently present a bottleneck. 27% of respondents to the 2024 survey named “post-processing and finishing requirements” as a reason for choosing other manufacturing methods over 3D printing, and 40% listed “quality and consistency of the final product”. However, as vapor smoothing is becoming prevalent across the industry and surface finishes are being radically improved, postprocessing is becoming less of a hurdle for production-level 3D printing. “Vapor smoothing machines have come a long way in recent years,” says Grant Fisher, supply chain manager at Protolabs, “specifically for vapor smoothing Nylon 12”—the most common material for MJF and SLS parts. “We continue to see a lot of growth in MJF and SLS, and vapor smoothing is a great option for aesthetic and end-use parts.” Another example is automation of the manufacturing process. For instance, computer-visionsupported systems to help sort finished 3D printed parts can represent significant labor savings and cost efficiency, further pushing the numbers in favor of 3D printing. Standardization is one key issue that remains, particularly in sectors such as aerospace, automotive and the medical industry. “We do a lot of work with aerospace, particularly in metal printing,” says Protolabs’ Eric Utley, “and the big hurdle that everyone’s dealing with is standardization. Building out that validation and standardization—I personally think it will take a few years to unstick that.” But the will is there and the cogs are moving. “It is a big talking point in the wider industry,” says Utley. The medical and aerospace sectors are the ones where 3D printing for production will continue to play the biggest role, says Alex Huckstepp. “These are the industries that are willing to spend a lot on high-performance, high-quality, complex custom designs and components. And that was always thought of as where 3D printing in production could make sense. The real production growth is still coming from those two industries. The space-race boom that we’re seeing has definitely been a tailwind for 3D printing.” There’s another point that’s often overlooked when discussing production-level 3D printing, sometimes to the detriment of embracing its incredible potential: it shouldn’t necessarily be approached as a replacement for existing technologies at all. “I think a lot of people have in their mind that 3D printing is an injection molding competitor—yeah, it’s not,” says DIVE’s Adam Hecht. “It’s an entirely new way of making things. They just don’t compete. There’s some overlap, yes, but ultimately, their careers separate. 3D printing is an entirely new tool. It’s enabling us to solve problems, and ultimately, to make products that previously couldn’t exist. All the low-volume, specialized applications and products where you previously had to tell people, sorry, we can’t make that—we can make them now. It’s just entirely different.” And one thing that’s going to enable and accelerate this are the specialized materials that are increasingly emerging on the 3D printing market.
  • About CNC Machining Apr 11, 2025
    What is CNC machining? CNC stands for Computer Numerical Control, so CNC machining can be defined as a manufacturing process where a computational code controls the parameters of the process, including: Movement of the machine tool head. Movement of the part or feed. Rotational speed. Tool selection, for multi-tool heads. Amount of coolant if needed. In simple words, it means using computational power to control and monitor all the necessary movements of a machine to manufacture parts out of raw material. How does CNC machining work? Basically, the CNC program provides commands that the machine can read and understand. These commands tell the motors of the machine when and how to move the corresponding components to achieve the desired results. The first CNC machines used punch cards with the written code and had limited flexibility for the movement of the tool. However, current CNC machines can be associated with CAD/CAM software (Computer Aided Design/Computer Aided Manufacturing). This means that the designer can create a 3D model of the part and then translate the parameters of the part into a CNC program by means of the CAM software. This final program, created by the CAM software, is fed into the machine and the manufacturing process begins. The part is finished when the machine finishes running the program. Another important aspect of the current and the most sophisticated CNC machines is the flexibility they have, since they can move in a range of 2.5 axes, 3 axes or 5 axes depending on the type of machine. CNC machining for woodWhile many might think that wood working is an art for only the most skilled carvers, the truth is that CNC machining for wood allows for a more efficient work. Even for the most complex designs. With CNC machining for wood is possible to produce larger parts in a shorter time. It also allows the woodworker to keep the natural beauty and strength of the wood used intact, something difficult to achieve with other type of machines for processing wood. Other benefits from using CNC machining for wood are: Complex shapes that are too difficult for manual work can be achieved easily. Higher precision and shorter production times. Higher efficiency and reduced material waste. Increased profitability. CNC machining for medical industryIt is well known that the medical industry is a very demanding one with all the standards that must be met. This is the case of CNC machining for medical industry. Fortunately, as it was mentioned above, the main benefits of CNC machining are high efficiency and high accuracy that leave almost no room for error. This makes CNC machining for medical industry the best manufacturing option in the sector, being precision machining the chosen alternative to meet the tight tolerance requirements. Other common requirements include: Complex geometries that usually require 5-axis machines. Very high levels of cleanliness. Possibility of machining different special materials. Top-level surface finish. Common applications of CNC machining for medical industry include: Implants and prosthetics. Surgical instruments. Electronic components for medical equipment. Micro medical devices which require micromachining. CNC machining for castingCasting is a manufacturing process that depends of good molds to obtain desired results. This means that it is necessary to select the best process to produce the molds. CNC machining for casting in 5-axis machines reduces the chance of error due to having to move the casting between machining operations. This error reduction allows for the casting to meet the tightest of tolerances. Another good application of CNC machining for casting is that most castings require a post processing to improve surface finish. CNC machining for casting allows to achieve the surface finish desired in a quick and efficient way. Moreover, CNC machining can deal with the type of materials commonly used for castings such as aluminum, which can be a problem for other manufacturing problems. CNC machining for aluminum Being a lightweight metal, aluminum is the preferred material for many applications, being automotive and aerospace the top users. However, its use in some of these applications requires very complex shapes. Moreover, thin parts may be required, which increases the possibility of deformation due to the low hardness and high thermal expansion of the material. Here’s where CNC machining for aluminum becomes important. 5-axis CNC machining for aluminum provides benefits such as: It is simple to set up, which reduces lead times and improves the efficiency It allows to work with complex geometry thanks to the ability of avoiding collision with the tool holder while tilting the wok table or the cutting tool. It can use shorter tools that are more rigid, some with high spindle speed rates which is achieved by reducing the load on the cutting tool. The parts don’t have to go through different workstations, meaning that the errors are reduced, the accuracy is increased, and the quality is ensured. These machines can use other alternatives such as water jet cutting or laser cutting which eliminate the problems of working with very thin aluminum pieces. CNC machining for aerospace parts With the number of components needed to assemble an aircraft, and the complexity of such components, it is clear that the aerospace industry requires the highest precision and efficiency possible out of a manufacturing process. Therefore, CNC machining for aerospace parts has grown in popularity, and it is now the go-to option for aerospace components manufacturing. CNC machining for aerospace parts needs to deal with complex requirements such as: Working with thin walls. Limiting material deformation, for example, when working with aluminum and other lightweight materials. Working with curved and complex geometries. On the other side, CNC machining is the best option for aerospace parts production as it provides the following benefits: It is a cost-effective process. It can provide high-quality results. It can work with custom designs. It provides high accuracy and precision engineering. It reduces and sometimes eliminates human error. It can produce complex geometries. CNC machining for jewelry In the past, jewels were only made by hand by fine artisans. However, it is not the case anymore, as more and more jewel producers are implementing methods to improve their efficiency and increase their profitability. There are different ways CNC machining for jewelry help artisans and jewel producers in general. The most common benefits found are: Easily create master models for casting the jewels. Quickly create casting molds with high accuracy. Create fine end-use jewels when using sophisticated CNC machines. Quickly and accurately create custom engravings. Easily finishing the jewels with marble faceting and jewel polishing processes. CNC machining tolerances It is true that CNC machining has taken manufacturing accuracy to very high levels. However, as it happens with other manufacturing process, the dimensions of the end product are never perfect. And here is where CNC machining tolerances play an important role. We have to remember that tolerances represent the maximum allowed variation for the same dimensions of two parts from the same series. They are usually set in the design phase. There are different aspects to be considered when setting the tolerances required: Mating components. Type of materials. Manufacturing processes available. Tighter tolerances are usually more expensive to achieve. Tolerances are usually classified according to how tight they are in the following groups: Fine tolerances. Medium tolerances. Coarse tolerances. Very coarse tolerances. In general, the limits for each group are set based on International Standards, including ANSI B4.1, ANSI B4.2, ISO 286, ISO 1829, ISO 2768, EN 20286 and JIS B 0401. For CNC machining tolerances, the standard limits are in the range of ± 0.005″ or 0.13mm. However, some very sophisticated services claim they can provide CNC machining tolerances as tight as ±0.0025mm. Here are some standard CNC machining tolerances depending on the CNC process: Lathe — ±0.005″ (0.13mm) Router — ± 0.005″ (0.13mm) 3-Axis Milling — ± 0.005″ (0.13mm) 5-Axis Milling — ± 0.005″ (0.13mm) Engraving — ± 0.005″ (0.13mm) Flatness — ± 0.010″ (0.25mm)
  • What are CNC machining services? Apr 17, 2025
    CNC machining services involve the use of computer - numerical - control (CNC) machines to fabricate parts and components. CNC machining services are highly automated, relying on pre - programmed software to control the movement of the machine tools. CNC machining services can be applied to a wide variety of materials, including metals, plastics, and composites.   CNC machining services are typically carried out using specialized CNC machines. These machines can be classified into different types, such as CNC milling machines, CNC lathes, and CNC routers. CNC machining services using milling machines are ideal for creating complex shapes by removing material from a workpiece. CNC machining services with lathes are mainly used for turning operations, producing cylindrical parts. CNC machining services involving routers are often used for cutting and shaping softer materials.   One of the key advantages of CNC machining services is their high precision. CNC machining services can achieve extremely tight tolerances, which is crucial in industries like aerospace and medical. CNC machining services also offer high repeatability. Once a program is set for a particular part, CNC machining services can reproduce that part with the same specifications over and over again. This is very beneficial for mass production.   CNC machining services are widely used in various industries. In the aerospace industry, CNC machining are used to manufacture components like turbine blades and wing structures. In the automotive industry, CNC machining services are essential for producing engine parts and chassis components. In the medical field, CNC machining services are utilized to fabricate surgical instruments and implants. CNC machining services also play an important role in the consumer goods industry, for example, in the production of high - end electronics and jewelry. he process of CNC machining services generally includes several steps. First, there is the design stage, where the part to be machined is designed using CAD software. Then, the CNC programming is done to convert the design into machine - readable instructions. After that, the setup of the CNC machine is carried out, including loading the proper tools and securing the workpiece. Next, the actual CNC machining services are performed as the machine follows the programmed instructions to cut or shape the material. Finally, quality control is conducted to ensure that the parts produced by CNC machining services meet the required standards.   CNC machining services also require careful consideration of several factors. Material selection is important for CNC machining services. Different materials may require different machining techniques and parameters. Tool selection is another aspect that affects CNC machining services. The right tools need to be chosen based on the material and the type of operation. Cost is also a factor in CNC machining services. The cost can vary depending on the complexity of the part, the material, and the quantity being produced.   In summary, CNC machining are a fundamental part of modern manufacturing. CNC machining services offer precision, repeatability, and the ability to create complex parts. CNC machining services are used in multiple industries for different applications. CNC machining continue to evolve with advancements in technology, enabling more efficient and accurate production. CNC machining services are an important aspect of the global manufacturing landscape. CNC machining services are constantly being improved to meet the increasing demands of various industries. CNC machining are a reliable and efficient way to produce high - quality parts and components. CNC machining services are here to stay and will continue to play a significant role in the future of manufacturing.      
  • Factory Show
    Factory Show Apr 28, 2025
    We are specialized in precise fabrication and supply of parts and components for  electronic non-standard isolation, microwave and nonferrous construction equipment, aerospace industry part, military industry part, consumer digital products, etc. We own many CNC precision machines and inspection equipment. Our Services include (but are not limited to): CNC milling, CNC turning, grinding; polishing, anodizing, plating, painting and assembly. We can process materials such as Aluminum, Brass, Bronze, Copper, Stainless Steel, Steel / Steel Alloy, Nylon, POM, Acrylic and Derlin.
1 2 3 4
4페이지

도움이 필요하신가요? 우리와 채팅

메시지를 남겨주세요
정보나 기술 지원을 요청하려면 양식을 작성하세요. 별표*가 표시된 모든 필드는 필수입니다.
제출하다
찾는 중 FAQs?
문의하기 #
+86 15375471059

영업 시간

월요일: 오전 9시~오전 12시, 오후 2시~오후 6시

화요일: 오전 9시~오전 12시, 오후 2시~오후 6시

수요일: 오전 9시~오전 12시, 오후 2시~오후 6시

목요일: 오전 9시~오전 12시, 오후 2시~오후 6시

금요일: 오전 9시~오전 12시, 오후 2시~오후 6시

(위의 시간은 모두 중국 시간입니다)

업무 시간 외에 이메일을 보내주시면 비즈니스 담당자를 배정해 서비스를 제공해 드리겠습니다.

제품

왓츠앱

문의하기